Practical Information

Lecture 0 of TDA384/DIT391

Principles of Concurrent Programming

Nir Piterman and Gerardo Schneider Chalmers University of Technology | University of Gothenburg SP1 2022/2023

Canvas Room and Course Website

Make sure to regularly check the Canvas Room and Course Website:

Canvas Announcements, discussion forum, videos

CTH login https://canvas.chalmers.se/courses/20098

GU login https://canvas.gu.se/courses/12523~20098

Website Lectures, labs, exams, ...

http://www.cse.chalmers.se/edu/course/TDA384 LP1

These should be your primary sources of information about the course.

Discussion Forum

Use the Canvas discussion forum for questions and discussions of general interest to the course:

https://canvas.chalmers.se/courses/20098/discussion_topics

https://canvas.gu.se/courses/12523~20098/discussion_topics

The forum URL is of course linked from the course website.

Do not share solutions to labs on Canvas (or anywhere else)!!!

Lectures

- Check out TimeEdit.
- All lectures are given in HC2
 - Well done! You are here!

		Mon 15:15-17:0	Wed	Thu 08:00-09:4	Fri 15:15-17:00
Week 35	29/8-2/9		31/8 13:15-17:00	1 Sep	2 Sep
Week 36	5-9/9	5 Sep		8 Sep	9 Sep
Week 37	12-16/9	12 Sep	14/9 08:00-09:45	5	
Week 38	19-23/9	19 Sep		22 Sep	23 Sep
Week 39	26-30/9	26 Sep			30 Sep
Week 40	3-7/10	3 Oct			
Week 41	10-14/10				14 Oct
Week 42	17-21/10	17 Oct			21 Oct

Labs

- Mixing physical and online labs.
- Lab assistance requests
 - Create a Zoom meeting w.o. password
 - Put support requests on <u>Waglys</u>
 - Name for support request (limited to 20 chars):
 - Zoom meeting ID (not link)
 - Add Chalmers ID (if possible)
- Demo signup
 - A doodle with available slots will be posted on the appropriate lab page before each deadline
 - Create a Zoom meeting (w.o. password)
 - Register the day before the demos
 - Use group ID + Zoom meeting ID as name in the poll
 - Be on Zoom 5 minutes before your time and be ready to run the demo

The teaching team

Lecturer/Examiner

• Nir Piterman

Teaching assistants (TAs)

- William Hughes
- Agustin Mista
- Abhiroop Sarkar

If you have questions

- Ask them during lectures and lab sessions.
- Post them on the discussion forum.
- Send an email to pcp-teachers@lists.chalmers.se (of personal nature)
- Book an appointment with the teacher or TAs (by email).

Protip: options 1 & 2 are quicker than options 3 & 4.

Student Representatives

Chalmers

Pegah Amanzadeh
 pegahamanzadeh@gmail.com

 TKITE

- Edward Karlsson
 edward1337@live.com
 MPSOF
- Samuel Kyletoft samuel@kyletoft.se TKDAT
- Enayatullah Norozi <u>norozie@student.chalmers.se</u> TKDAT
- Hugo Stegrell <u>sthugo@student.chalmers.se</u> MPCSN

GU

• You?

Main Learning Goals

- By the end of the course you should be able to
 - Understand the problems common to concurrent and parallel systems,
 - Demonstrate techniques and patterns to reason about and write correct and efficient concurrent programs,
 - Apply those techniques and patterns in modern programming languages.

Overview of the Course

- Introduction to concurrency.
- Part 1. Classic, shared-memory concurrency in Java:
 - java threads,
 - locks, semaphores, and monitors.
- Part 2. Message-passing concurrency:
 - Erlang and the actor model.
- Part 3. Parallelizing computations:
 - fork/join parallelism,
 - lock-free programming

Class #	Date	Торіс	
1	Wed, Aug 31	Introduction to concurrent programming	
2	Wed, Aug 31	Races locks and semaphores	
3	Thu, Sep 1	Models of concurrency and synchronization algorithms	
4	Fri, Sep 2	Java Tutorial	
5	Mon, Sep 5	Synchronization problems with semaphores	
6	Thu, Sep 8	Monitors	
7	Fri, Sep 9	Intro to FP in Erlang	
8	Mon, Sep 12	Message-passing concurrency in Erlang	
9	Wed, Sep 14	Sync problems with message-passing	
10	Mon, Sep 19	Parallelizing computations	
11	Thu, Sep 22	Parallel linked lists	
12	Fri, Sep 23	Parallel Queues	
13	Mon, Sep 26	Lock-free programming (STM)	
14	Fri, Sep 30	Verification of Concurrent Programming	
15	Mon, Oct 3	Concurrency in Weak Memory Models	
16	Fri, Oct 14	TBD	
17	Mon, Oct 17	TBD	
18	Fri. Oct 21	Revision	

Lectures

- 14 lectures + 1 revision lecture
- 2 Tutorials (Java and Erlang)
- Subject to change
- Some lectures will take less/more time -> the schema might then be rescheduled

Make sure to check up-to-date schedule on the website!

Labs

There will be one preparation lab and three "real" labs – one for each part of the course:

- 1. Trainspotting (Java)
- 2. CCHAT (Erlang)
- 3. A-mazed (Java)

Descriptions of the labs, deadlines, and rules are on the website

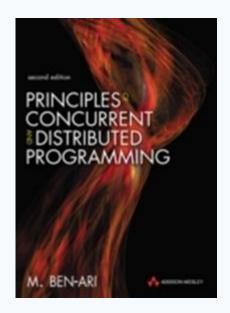
- Lab 0: Set up and register your group (2 students) in Fire
- Make sure to check the lab/room schedule on the website

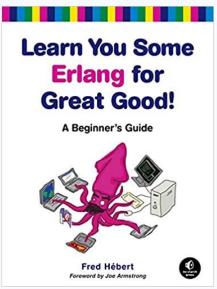
Do not share solutions to labs on Canvas (or anywhere else) !!!

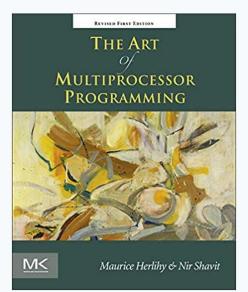
Tutorials

There will be 2 tutorials

- 1. Java tutorial (today? tomorrow? Friday?)
- 2. Erlang tutorial (Lecture 7 (hopefully next week))




Slides and Reading Material


Lecture slides: will be on the website.


Books:

- Ben-Ari: Principles of concurrent and distributed programming, 2nd edition.
- Hébert: Learn you some Erlang for great good (free online),
- Herlihy & Shavit: The art of multiprocessor programming

Exam

- Open-book exam:
 - max. 2 textbooks,
 - max. 4 two-sided A4 sheets of notes (printed or handwritten),
 - an English dictionary.
- All topics in the lectures can be examined (except guest lectures).
- See exams of previous years for examples (on the website).
- Exam dates:
 - 20 October 2022
 - 13 March 2022, 17 August 2022 (re-exam)
- Check the website for updates!
- Exam grading: see the course website.

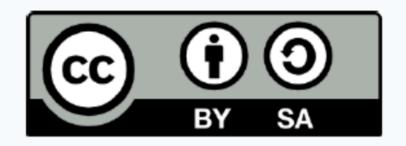
Computing Resources

- Install Java and Erlang/OTP on your computers.
- Try out the examples presented in class; the complete examples will be available on the website for each lecture.
- Lab 1 (Trainspotting) requires a simulator, which runs on the lab computers (Unix/Linux workstations).
- See the course website for instructions on how to
 - use the lab computers, and
 - set up Java & Erlang/OTP on your own computers.

There's a lab tomorrow – What's the point of that?

- Complete the setup assignment!
- Create the groups!
- Setup the train system!
- Start playing with it with sequential programs:
 - Have only one train.
 - Start and stop.
 - Check distances and speeds.
 - When is a train on a switch?
 - Make plans.

Erlang, Erlang, Erlang, ...


- Start early!
- Install the Erlang environment.
- Start the online tutorial.
- Attend the Erlang Tutorial!
- Especially if never done functional programming before.
- Compared to previous years:
 - Erlang lab extended to 3.5 weeks
 - First lab support moved to Fri 17 Sep
 - Demo moved to Mon 11 Oct

Course Evaluation

• Please remember to fill in the course evaluation ("kursvärdering") when the time comes!

- Important feedback for us
- To know what can be improved as well as what is working well

© 2016–2019 Carlo A. Furia, Sandro Stucki

Except where otherwise noted, this work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.

To view a copy of this license, visit

http://creativecommons.org/licenses/by-sa/4.0/.